LOK-Rohrschlangen-Wärmetauscher Rippenrohrschlangen und Mäander

Wärmetauscher für industrielle Anwendungen zur Temperierung von Öl und anderen Medien

- → Unempfindlich gegenüber großen Temperaturamplituden
- → Hochtemperaturfähig
- → Montage- und wartungsfreundlich

- → Geringer Kühlwasserbedarf
- → Standardbauformen kurzfristig ab Lager lieferbar
- → Sonderbauformen gemäß Kundenspezifikationen in wirtschaftlichen Losgrößen

883 / 2

Schmöle GmbH

Das Unternehmen

- → Mehr als 160 Jahre Erfahrung
- → Höchste Qualität
- → 3 verschiedene Berippungsverfahren
- → 16 Berippungsmaschinen
- → Verschiedene Wendel- und Biegeverfahren
- → Entwicklungspartner für Ihre Produkte
- → Erfahrene und motivierte Mitarbeiter
- → Solide finanzielle Grundlage und stabile Eigentümerverhältnisse

Das Produktspektrum

Rippenrohre und Wärmetauscher

- → Rippenrohre gewalzt
- → Rippenrohre lasergeschweißt
- → Rippenrohre gelötet
- → Drallrohre
- → Rippenrohrwendel
- → Rippenrohrwendel mit Armatur
- → Koaxial-Wärmetauscher
- → Wärmetauscher bis 150 kW
- → Sonderkonstruktionen

Rohrsysteme und Flächenwärmetauscher

- → Rohre mit unterschiedlichen Dimensionen und Profilen
- → Rohrregister
- → Rohrregister mit Anschlusselementen
- → Rohrregister auf Trägermaterial
- → Modul mit Zusatzoptionen
- → Modul mit Dämmung
- → Raumlösungen

Zertifizierung des Qualitäts-Management-Systems

Unser Unternehmen ist durch unabhängige Stellen nach den Qualitätsnormen ISO 9001:2008 und DGR 97/23/EG zertifiziert. Mit einem über Jahrzehnte fortgeschriebenen, konsequenten Qualitätsbewusstsein haben wir uns weltweit den Ruf eines zuverlässigen Lieferanten erarbeitet.

Höchste Effizienz trifft Effektivität.

Die Vorteile des Rippenrohrschlangen-Designs bei Betrieb und Wartung:

Hochtemperaturfähig Einsetzbar bei großen Temperaturamplituden Geringer Kühlwasserbedarf – Montagefreundlich

LOK Rohrschlangen-Wärmetauscher Rippenrohrschlangen und Mäander

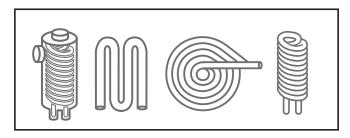
mit Trufin oder Laserfin® Rippenrohren

Anwendungsgebiete

Rippenrohrschlangen-Wärmetauscher von Schmöle eignen sich u.a. zur Kühlung und Erwärmung von Öl, Emulsion und Wasser aus geschlossenen Kreisläufen.

LOK- und Rippenrohrschlangen-Wärmetauscher nach Kundenspezifikation werden insbesondere in folgenden Anlagen verwendet:

- → Kunststoff-Spritzgießmaschinen
- → Kunststoff-Extruderanlagen
- → Hydraulikanlagen, Pressen
- → Werkzeugmaschinen
- → Kupplungen und Getrieben
- → Kompressoren und Pumpen
- → Temperiergeräten
- → Abwärmenutzung


Werkstoffe

Mit seinem technischen Equipment und Know-How ist Schmöle in der Lage alle metallischen Werkstoffe zu verarbeiten.

Neben den Werkstoffen Aluminium, Kupfer und Kupferlegierungen stellt Schmöle auch Wärmetauscher aus korrosionsbeständigen Werkstoffen wie Edelstähle, Nickelbasislegierungen und Titan her. Diese finden Verwendung bei erhöhter Korrosionsbeanspruchung durch den Einsatz von Medien wie Oberflächenwasser, Meerwasser und Wasser aus geschlossenen Kreisläufen.

Bauformen

Die Industriewärmertauscher von Schmöle gliedern sich in Bauformen mit und ohne Gehäuse.

Wärmetauscher mit Gehäuse (LOK)

Die LOK Standardbaureihen S, M, T werden aus vorgefertigten Bauteilen zusammengesetzt und sind kurzfristig lieferbar.

LOK Sonderbaureihen mit besonderen Anforderungen durch Betriebsbedingungen (Temperatur und Druck) sowie Bauraum und Montage stellt Schmöle für seine Kunden in wirtschaftlichen Losgrößen her.

Wärmetauscher ohne Gehäuse

Schmöle findet für seine Kunden Lösungen abgestimmt auf den verfügbaren Bauraum und die Betriebsbedingungen der zu temperierenden Maschinen und Anlagen. Nach Bedarf konstruiert und fertigt Schmöle Rippenrohrschlangen-Wärmetauscher in Form von Mäandern, Spiralen/Schnecken oder komplexen mehrdimensionalen Geometrien in wirtschaftlichen Losgrößen.

Kundenspezifische Rippenrohrwärmetauscher

Mögliche Bauformen

- → Rohrschlangen
- → Schnecken
- → Mäander
- → Freie Geometrien

Bearbeitungsverfahren

- → Berippen
- → Biegen
- → Wendeln
- → Löten
- → Schweißen
- → Endenbearbeitung.

Zusammen mit seinen Kunden entwickelt Schmöle maßgeschneiderte Lösungen für den Wärmetransfer zwischen Medien wie Betriebsflüssigkeiten, Produkten oder gasförmigen Stoffströmen und den zugehörigen flüssigen oder gasförmigen Kühl- und Heizmedien.

Zur Vergrößerung der übertragbaren Wärmeleistung, zur Adaptierung der Geometrie auf den verfügbaren Bauraum und zur Erhöhung von Verfügbarkeit und Lebensdauer des Wärmetauschers setzt Schmöle auf den Einsatz seiner Hochleistungsrippenrohre.

Beispiele hierfür sind:

- → Temperierung von Kühlmitteln und Öl in Werkzeugmaschinen
- → Wärmetauscher für Kompressoren
- → Temperierung von Dielektrik-Erodierflüssigkeiten
- → Ölkühlung in Getriebegehäusen für den Automobilbau

Adaptierung des Wärmetauschers auf den verfügbaren Bauraum

Die Integration von Wärmetauschern für Öle, Kühlwasser oder weiterer Betriebsflüssigkeiten in Gehäusen oder Behältern wird häufig durch den geringen zur Verfügung stehenden Bauraum erschwert. Schmöle erarbeitet zusammen mit seinen Kunden, in Abhängigkeit der zu temperierenden Medien, geometrisch optimierte Wärmetauscher.

Übertragbare Wärmeleistung

Zur Optimierung der Wärmeübergänge können, entsprechend den jeweiligen Anwendungen mit natürlicher oder erzwungener Konvektion, Kondensation oder Verdampfung passende Hochleistungsrohre von niedrig- bis hochberippt aus dem Rippenrohrportfolio von Schmöle ausgewählt werden.

Verfügbarkeit und Lebensdauer

Zur Erhöhung der Verfügbarkeit und der Erfüllung von erhöhten Sicherheitsanforderungen können Rippenrohrschlangen-Wärmetauscher auch mit doppelwandigen Sicherheitsrohren hergestellt werden. Eine gute Wärmeleitung in der Rohrwand wird durch die klangfeste Verbindung der Rohre gewährleistet. Darüber hinaus sind die Sicherheitswärmetauscher für die Ausrüstung mit Leckanzeigen geeignet.

Entscheidend für die Lebensdauer der Wärmetauscher ist die richtige Wahl der Werkstoffe. Schmöle verarbeitet unter anderem:

- → Kupfer → Kupfer-Nickel → Aluminium
- → Stahl → Edelstahl

Rippenrohre

LOK Rohrschlangen-Wärmetauscher

Standardrohrschlangen

Die Rippenrohrschlangen aus Cu-DHP können auf Wunsch auf der Außenseite galvanisch verzinnt werden.

Den LOK-Rohrschlangen-Wärmetauscher kennzeichnen seine Hochtemperaturfähigkeit, seine Einsetzbarkeit bei großen Temperaturamplituden und sein geringer Kühlwasserbedarf. Zusammen mit der Montagefreundlichkeit des LOK-Wärmetauschers ergeben sich hierdurch die Unterschiede im Vergleich zu herkömmlichen Ölkühlern.

Hochtemperaturfähigkeit und Einsetzbarkeit bei großen Temperaturamplituden

Dank des Rohrschlangendesigns kann sich das Wendel bei Temperaturbelastung frei ausdehnen. Es entstehen keine thermisch induzierten Spannungen.

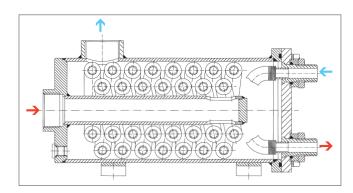
Durch die Wahl von geeigneten Dichtungen und Rohrwerkstoffen wie Kupfer-Nickel Legierungen und Edelstähle kann der Temperaturbereich noch weiter angehoben werden.

Geringer Kühlwasserbedarf

LOK-Rohrschlangen-Wärmetauscher werden mit Hochleistungs-Rippenrohren Trufin W/HT Turbo-Chil in ein- bis dreigängiger Ausführung hergestellt. Hierdurch ergeben sich bei geringem Bedarf an Kühlmedium große Oberflächen auf der Mantelseite. Durch die spiralförmigen

Betriebsbedingung	Zulässiger Einsatzbereich								
	Mantelraum	Rohrraum							
Druck	≤ 16 bar (S+M) ≤ 7,5 bar (T)	≤ 16 bar							
Temperatur	Cu ≤ 150 °C CuNi ≤ 300 °C Edelst.* ≤ 400 °C	≤90°C							

^{*}Sonderbauformen


Innenstege der Trufin W/HT Rohre wird der innere Wärmeübergang auf das Kühlmedium optimiert.

Montagefreundlichkeit

Der Rippenrohrschlangen-Wärmetauscher ist mit O-Ringen im Deckelflansch montiert und abgedichtet. Dieser wird am Gehäuseflansch verschraubt, die Abdichtung erfolgt ebenfalls mittels O-Ring.

Bei der T-Ausführung ist der Deckelflansch fest mit dem Stahlgehäuse verschweißt. Die Rippenrohrschlange wird von der Rückseite in das Gehäuse eingeschoben, in den Deckelflansch montiert und mittels O-Ringen abgedichtet.

Wartungs- und Reinigungsarbeiten sind durch die Zerlegbarkeit des LOK Rohrschlangen-Wärmetauscher einfach und effektiv durchführbar.

LOK-Rohrschlangen-Wärmetauscher der Baureihen S, M und T

Für den Leistungsbereich bis ungefähr 111 kW werden LOK-Rohrschlangen-Wärmetauscher in drei verschiedenen Baureihen serienmäßig geliefert:

Baureihe S

Standardausführung mit einem mantelseitigen Anschluss für den Ölaustritt und Befestigungskonsolen

Baureihe M

Wärmetauscher mit zwei mantelseitigen Anschlüssen für Öleintritt und Ölaustritt

Auf Wunsch können Spannschellen wie abgebildet als Zubehör mitbestellt (2 Stück je Wärmetauscher) werden.

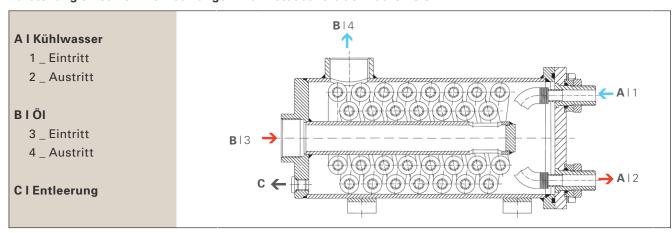
Baureihe T

Wärmetauscher in offener Bauweise, geeignet für den Tankeinbau

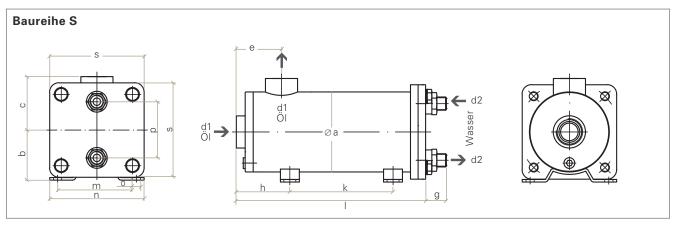
LOK-Rohrschlangen-Wärmetauscher der Baureihe T können für besondere Einsatzfälle auch mit Flachdichtung geliefert werden.

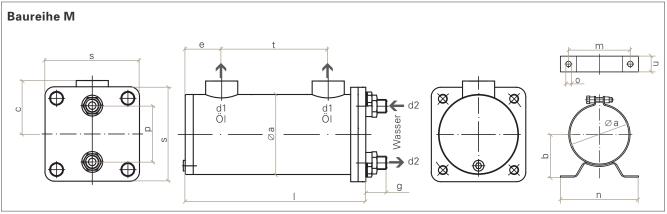
Die Gehäuse werden außen mit folgendem Grundanstrich versehen: Farbe grau - RAL 7035.

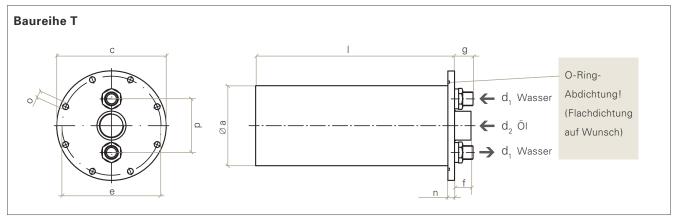
Werkstoffe


Für die Standardausführungen der LOK-Rohrschlangen-Wärmetauscher in Kupfer oder Kupfer-Nickel werden folgende Werkstoffe verwendet:

Komponenten	Ausführung Kupfer		Ausführung Kupfer	r-Nickel
	Werkstoff	Norm	Werkstoff	Norm
Gehäusemantel	P235 GH	AD-2000 W4	P235 GH	AD-2000 W4
Deckelflansch	S235 JRG2	AD-2000 W1	S235 JRG2	AD-2000 W1
Rippenrohrschlange	Cu-DHP	DIN EN 12451	CuNi10Fe1Mn	DIN EN 12451
Mantelseitige Anschlüsse	P235 TR2	DIN EN 10216-1	P235 TR2	DIN EN 10216-1
Rohrseitige Anschlüsse	CuZn39Pb3	DIN EN 12163	CuNi10Fe1Mn	DIN EN 12163
O-Ring-Dichtungen	FPM 70	DIN ISO 3601	FPM 70	DIN ISO 3601


Für die einzelnen Baureihen und Größen werden für die Rippenrohrschlange folgende Werkstoffe eingesetzt:


LOK-Rohrschlangen-Wärmetauscher	Größen	Werkstoffe	
Baureihe S	alle	Cu-DHP	CuNi10Fe1Mn
Baureihe M	alle	Cu-DHP	CuNi10Fe1Mn
Baureihe T	bis T 9-03.23-1	Cu-DHP	CuNi10Fe1Mn
Baureihe T	ab T 9-03.31	-	CuNi10Fe1Mn


Darstellung eines LOK-Rohrschlangen-Wärmetauschers der Baureihe S

Abmessungen und Richtleistung

Codierung* der LOK-Rohrschlangen-Wärmetauscher:

Beispiel	LOK	s	9-01.	14 –	2	Cu					
Тур											
Baureihe											
Serie											
Gehäusegröße											
Größe der Rippenrohrschlange											
Anzahl der parallel gewicke	elten R	ohre									
Werkstoff der Rippenrohrs	chlang	е									

Die Richtleistungen beziehen sich auf folgende Betriebsbedingungen:

→ Mittlere Öltemperatur $\vartheta_{\rm \bar{o}m} = 45\,^{\circ}{\rm C}$ → Kinematische Viskosität des Öls $v_{\rm \bar{o}} = 40\,^{\circ}{\rm 10^{-6}\,m^2/s}$ → Ölgeschwindigkeit $V_{\rm \bar{o}} = 1\,\rm m/s$ → Mittlere Kühlwassertemperatur $\vartheta_{\rm wm} = 20\,^{\circ}{\rm C}$

→ Kühlwassergeschwindigkeit V_w = 2 m/s

^{*}Bitte, bei Anfragen und Bestellungen die Bestell-Nr. (Codierung) vollständig angeben, d. h. einschließlich Kurzzeichen für den Werkstoff der Rippenrohrschlange: Kupfer = Cu; Kupfer-Nickel = CuNi

Abmessungen und Richtleistungen

LOK-Rohrschlangen-Wärmetauscher der Baureihe S

Wärme-		Durch	satz	Abmessungen										Ungef.				
austauscher Typ LOK	tung	ÖI	Wasser															Gew.
	Ò	V _ö	V _w	b	С	d ₁	d ₂	е	g	h	k	1	m	n	o	р	s	$\mathbf{G}_{\mathrm{ges}}$
	[kW]	[l/min]	[l/h]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
Gehäusemar	Gehäusemantel-Außendurchmesser a = 70 mm																	
S 9-00.11-1	3,1	70	350	45	55	G ³ / ₄	G 3/8	64	30	102	140	290	75	100	11	40	85	4,0
S 9-00.12-1	5,9	70	350	45	55	G 3/ ₄	G 3/8	64	30	102	240	420	75	100	11	40	85	5,5
S 9-00.13-1	7,4	70	350	45	55	G 3/ ₄	G 3/8	64	30	102	450	680	75	100	11	40	85	6,5
S 9-00.14-1	10,9	70	350	45	55	G ³ / ₄	G 3/8	64	30	102	450	680	75	100	11	40	85	8,0
Gehäusemantel-Außendurchmesser a = 108 mm																		
S 9-01.13-2	8,0	180	700	70	77	G 1	G 1/2	66	31	84	325	479	110	140	13	70	130	9,0
S 9-01.14-1	11,8	180	350	70	77	G 1	G 1/2	66	31	84	325	479	110	140	13	70	130	10,0
S 9-01.14-2	11,8	180	700	70	77	G 1	G 1/2	66	31	84	325	479	110	140	13	70	130	10,0
S 9-01.21-2	16,0	180	700	70	77	G 1	G 1/2	66	31	84	325	479	110	140	13	70	130	12,0
\$ 9-01.23-2	28,4	180	700	70	77	G 1	G 1/2	66	31	84	550	699	110	140	13	70	130	16,5
Gehäusemar	ntel-Au	ßendu	rchmes	sser a =	: 127 m	ım												
S 9-02.22-1	19,3	220	630	80	85	G 1 1/ ₄	G 1/2	72	31	85	400	539	125	150	13	90	150	15,5
\$ 9-02.22-2	19,4	220	1250	80	85	G 1 1/ ₄	G 1/2	72	31	85	400	539	125	150	13	90	150	15,5
\$ 9-02.23-2	24,6	220	1250	80	85	G 1 1/ ₄	G 1/2	72	31	85	400	539	125	150	13	90	150	17,5
S 9-02.32-2	41,2	220	1250	80	85	G 1 1/ ₄	G 1/2	72	31	85	600	789	125	150	13	90	150	25,0
Gehäusemar	ntel-Au	ßendu	rchmes	sser a =	152,4	mm												
S 9-03.31-1	29,9	290	890	95	97	G 1 1/ ₄	G ³ / ₄	80	39	131	450	661	140	170	13	110	180	27,0
S 9-03.31-2	29,4	290	1770	95	97	G 1 1/ ₄	G 3/ ₄	80	39	131	450	661	140	170	13	110	180	27,0
S 9-03.32-2	35,8	290	1770	95	97	G 1 1/ ₄	G 3/ ₄	80	39	131	450	661	140	170	13	110	180	30,0
S 9-03.42-2	60,3	290	1770	95	97	G 1 1/ ₄	G 3/ ₄	80	39	160	650	961	140	170	13	110	180	42,0
Gehäusemar	ntel-Au	ßendu	rchmes	sser a =	193,7	mm												
S 9-04.41-1	41,9	370	1530	130	125	G 1 ¹ / ₂	G1	92	45	155	450	775	180	210	13	130	230	48,0
S 9-04.41-2	42,6	370	3060	130	125	G 1 ¹ / ₂	G1	92	45	155	450	775	180	210	13	130	230	48,0
S 9-04.42-3	56,6	370	4590	130	125	G 1 ¹ / ₂	G1	92	45	155	450	775	180	210	13	130	230	54,0
S 9-04.51-3	72,3	370	4590	130	131	G 2	G1	100	45	194	650	1045	180	210	13	130	230	64,0
S 9-04.52-3	83,7	370	4590	130	131	G 2	G1	100	45	194	650	1045	180	210	13	130	230	68,0
S 9-04.53-3	111,3	370	4590	130	131	G 2	G1	100	45	300	750	1305	180	210	13	130	230	83,0

Abmessungen und Richtleistungen

LOK-Rohrschlangen-Wärmetauscher der Baureihe M

Wärme-	Richt-	Durch	isatz	Abmessungen											Ungef.			
austauscher Typ LOK	tung	ÖI	Wasser															Gew.
	Ò	V _ö	Ý,,	b	С	d ₁	d ₂	е	g	-1	m	n	0	р	s	t	u	G _{ges}
	[kW]	[l/min]	[l/h]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
Gehäusemar	Gehäusemantel-Außendurchmesser a = 70 mm																	
M 9-00.12-1	5,9	70	350	46	55	G 3/ ₄	G 3/8	39	30	415	68	90	8,5	40	85	312	20	5,5
M 9-00.14-1	10,9	70	350	46	55	G 3/ ₄	G 3/8	39	30	675	68	90	8,5	40	85	562	20	8,0
Gehäusemar	ntel-Au	ßendu	rchmes	sser a =	: 108 m	m												
M 9-01.13-2	8,0	180	700	67	77	G 1	G 1/2	65	31	455	110	128	8,5	70	130	312	25	9,0
M 9-01.14-1	11,8	180	350	67	77	G 1	G 1/2	65	31	455	110	128	8,5	70	130	312	25	10,0
M 9-01.14-2	11,8	180	700	67	77	G 1	G 1/2	65	31	455	110	128	8,5	70	130	312	25	10,0
M 9-01.21-2	16,0	180	700	67	77	G 1	G ¹ / ₂	65	31	455	110	128	8,5	70	130	312	25	12,0
M 9-01.22-2	22,2	180	700	67	77	G 1	G 1/2	39	31	680	110	128	8,5	70	130	562	25	15,5
M 9-01.23-2	28,4	180	700	67	77	G 1	G 1/2	39	31	680	110	128	8,5	70	130	562	25	16,5
Gehäusemar	ntel-Au	ßendu	rchmes	sser a =	: 127 m	m												
M 9-02.22-2	19,4	220	1250	78	89	G 1 1/ ₂	G 1/2	55	31	685	118	140	11	90	150	536	30	18,0
M 9-02.31-2	32,9	220	1250	78	89	G 1 1/ ₂	G 1/2	55	31	685	118	140	11	90	150	536	30	21,6
Gehäusemar	ntel-Au	ßendu	rchmes	sser a =	: 152,4	mm												
M 9-03.31-2	29,4	290	1770	95	92	G 1 1/ ₂	G 3/ ₄	53	39	976	140	170	13	110	180	847	30	33,8
M 9-03.41-2	46,3	290	1770	95	92	G 1 1/ ₂	G 3/ ₄	53	39	976	140	170	13	110	180	847	30	38,7
M 9-03.42-2	60,3	290	1770	95	92	G 1 ¹ / ₂	G 3/ ₄	53	39	976	140	170	13	110	180	847	30	42,8
Gehäusemar	ntel-Au	ßendu	rchmes	sser a =	193,7	mm												
M 9-04.51-3	72,3	370	4590	130	131	G2	G1	60	45	1292	180	220	13	130	230	1110	30	70,0
M 9-04.52-3	83,7	370	4590	130	131	G2	G1	60	45	1292	180	220	13	130	230	1110	30	74,0
M 9-04.53-3	111,3	370	4590	130	131	G2	G1	60	45	1292	180	220	13	130	230	1110	30	83,0

Abmessungen und Richtleistungen

LOK-Rohrschlangen-Wärmetauscher der Baureihe T

Wärme- austauscher	Richt-	Durchsa	atz	Abmessungen										Ungef. Gew.
Typ LOK	tung	ÖI	Wasser											Gew.
	Ò	V _ö	V _w	С	d ₁	d ₂	е	f	g	1	n	O	р	$\mathbf{G}_{\mathrm{ges}}$
	[kW]	[l/min]	[l/h]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
Gehäusemantel-Außendurchmesser a = 108 mm														
T 9-01.12-1	5,4	180	350	160	G ³ / ₄	G 1/2	140	30	33	150	10	9	70	5,5
T 9-01.13-1	8,7	180	350	160	G 3/ ₄	G 1/2	140	30	33	210	10	9	70	6,0
T 9-01.14-1	11,8	180	350	160	G 3/ ₄	G 1/2	140	30	33	260	10	9	70	7,0
T 9-01.14-2	11,8	180	700	160	G ³ / ₄	G 1/2	140	30	33	350	10	9	70	7,5
T 9-01.21-2	16,0	180	700	160	G 3/ ₄	G 1/2	140	30	33	430	10	9	70	10,0
T 9-01.22-2	22,2	180	700	160	G 3/ ₄	G 1/2	140	30	33	540	10	9	70	12,0
T 9-01.23-2	28,4	180	700	160	G ³ / ₄	G ¹ / ₂	140	30	33	650	10	9	70	13,0
Gehäusemar	ntel-Auß	endurchr	messer a	= 127 mn	n									
T 9-02.21-1	13,8	220	630	190	G 1	G 1/2	170	26	33	290	10	9	90	10,0
T 9-02.22-1	19,3	220	630	190	G 1	G 1/2	170	26	33	390	10	9	90	13,5
T 9-02.22-2	19,4	220	1250	190	G 1	G 1/2	170	26	33	390	10	9	90	13,5
T 9-02.23-2	24,6	220	1250	190	G 1	G 1/2	170	26	33	480	10	9	90	16,0
T 9-02.31-2	32,6	220	1250	190	G 1	G 1/2	170	26	33	610	10	9	90	20,0
Gehäusemar	ntel-Auß	endurchr	messer a	= 152,4 n	nm									
T 9-03.23-1	22,9	290	890	235	G 1 ¹ / ₂	G 3/ ₄	210	24	40	380	12	9	110	18,5
T 9-03.31-1*	29,9	290	890	235	G 1 ¹ / ₂	G 3/ ₄	210	24	40	480	12	9	110	22,0
T 9-03.31-2*	29,4	290	1770	235	G 1 ¹ / ₂	G ³ / ₄	210	24	40	520	12	9	110	22,5
T 9-03.32-2*	35,8	290	1770	235	G 1 ¹ / ₂	G ³ / ₄	210	24	40	610	12	9	110	25,5
T 9-03.41-2*	46,3	290	1770	235	G 1 ¹ / ₂	G ³ / ₄	210	24	40	750	12	9	110	32,5
T 9-03.42-2*	60,3	290	1770	235	G 1 ¹ / ₂	G ³ / ₄	210	24	40	920	12	9	110	39,0
Gehäuseman	tel-Auße	ndurchn	nesser a :	= 193,7 m	m									
T 9-04.42-3*	56,6	370	4590	265	G 2	G 1	240	40	45	735	16	14	130	44,5
T 9-04.51-3*	72,3	370	4590	265	G 2	G 1	240	40	45	835	16	14	130	50,0
T 9-04.52-3*	83,7	370	4590	265	G 2	G 1	240	40	45	1005	16	14	130	66,0

^{*}Diese Wärmetauscher werden nur mit Rippenrohrschlangen aus Kupfer-Nickel gliefert.

ISO 9001:2008 Das Qualitätsmanagementsystem ist anwe

Entwicklung und Herstellung von Rippenrohren und Wärmetauschern.

Jarlam

Prüfung

LOK-Rohrschlangen-Wärmetauscher werden folgenden Dichtheitsprüfungen mit Stickstoff unter Wasser unterzogen:

→ Rohrseite Baureihen S, M, T Druck 23 bar/30 s → Mantelseite Baureihen S, M Druck 23 bar/30 s Baureihe T Druck 11 bar/30 s

Zulassung

LOK-Rohrschlangen-Wärmetauscher gelten als Druckbehälter im Sinne der Druckbehälterverordnung. Die für die Herstellung erforderliche HP 0-Zulassung liegt für alle Ausführungen und Leistungsgrößen vor.

In dieser Produktbeschreibung wurden eigene Untersuchungen und die einschlägige Literatur berücksichtigt. Sie wurde mit der gebotenen Sorgfalt zusammengestellt.

Unabhängig davon sollte die Eignung des Produktes unter den tatsächlichen Betriebsbedingungen überprüft werden. Dies gilt insbesondere für die Eignung des gewählten Werkstoffes für den vorgesehenen Einsatzfall. Die einschlägigen Normen und Vorschriften für den Betrieb von Wärmetauschern sind zu beachten. Änderungen behalten wir uns vor, insbesondere wenn sie die Qualität des Produktes verbessern, die Leistungsfähigkeit erhöhen oder die Herstellung vereinfachen.

Gern stehen wir Ihnen beratend zur Verfügung.

Schmöle GmbH

Das Unternehmen

Die Schmöle GmbH zählt zu den führenden Anbietern von Rippenrohren und Wärmetauschern und ist zudem der Erfinder des lasergeschweißten Rippenrohrs.

Schmöle bietet seinen Kunden sowohl aktive Mitwirkung bei der Lösung anwendungstechnischer Aufgaben als auch die zielbewusste Weiterentwicklung von Produkten, Programmen und Verfahren.

160 Jahren Erfahrung, intensive Forschungs- und Entwicklungsarbeit, moderne Fertigungsmethoden und ein zertifiziertes Qualitätssicherungssystem helfen uns, diesen hohen Ansprüchen gerecht zu werden.

Die Schmöle GmbH umfasst zwei Produktbereiche:

Produktbereich 1:

→ Rippenrohre und Wärmetauscher

Produktbereich 2:

→ Kühldeckenelemente und Flächenwärmetauscher

Qualitätsmanagement

Schmöle verfügt seit 1993 über ein zertifiziertes Qualitätsmanagementsystem nach DIN EN SO 9001 und über eine Zulassung nach Druckgeräterichtlinie 97/23/EG.

Die Produktion bei Schmöle wird von Prüfungen begleitet, die in einem QM-Prüfablaufplan festgelegt sind, der individuell für das jeweilige Produkt erstellt wird und sämtliche Arbeits- und Prüfschritte enthält.

Durch die konsequente Weiterentwicklung des QM-Systems besitzt Schmöle bei seinen Geschäftspartnern den Ruf eines qualitativ hochwertigen und zuverlässigen Partners.

Wir beraten Sie gerne.

Fon +49 (0)2373 975 500 Fax +49 (0)2373 975 720 info@schmoele.de

www.schmoele.de

Werk WestickWerk ArdeyWerk StuckenackerSchmöle GmbHSchmöle GmbHSchmöle GmbHWesticker Straße 84Ardeyer Straße 15Stuckenacker 658730 Fröndenberg58708 Menden

Ein Unternehmen der Surikate Gruppe.

